Just another free Blogger theme

Panas hasil pembakaran akan diubah menjadi tenaga mesin, namun panas yang berlebih secara menerus akan menimbulkan kerugian yang dapat menurunkan engine performance dan bahkan dapat memicu terjadinya kerusakan pada mesin itu sendiri. Untuk mencegah terjadinya resiko tersebut diatas, maka diperlukan pendinginan mesin yang baik dan berkelanjutan. Dengan demikian maka mesin akan dapat beroperasi pada temperatur kerja yang ideal. Salah satu poin yang perlu mendapat perhatian dalam operasional mesin bahwa sistem pendingin mejadi salah satu sistem penunjang dalam operasional mesin yang memliki peran sangat penting.

Dalam operasionalnya tidak jarang akan ditemukan kendala – kendala yang sifatnya dapat menghambat kelancaran operasional mesin. Kendala yang dimaksudkan tentu perlu mendapat perhatian khusus dan penanganan dengan segera untuk dapat memaksialkan kondisi mesin tersebut. Salah satu kendala yang sangat mungkin terjadi adalah terjadinya kebocoran air tawar pendingin yang masuk dalam rua bakar mesin.



Indikator tekanan air tawar pendingin yang turun karena pengaruh "masuk angin" (Foto & Video by: Dokumentasi pribadi penulis)


Penyebab utama terjadinya kebocoran air tawar pendingin dalam rung bakar mesin adalah dimungkinkan adanya kebocoran yang memilki “akses” langsung ke ruang bakar mesin. Beberapa sebab yang memungkinkan terjadinya kebocoran air tawar pendingin dalam ruang bakar tersebut diantaranya adalah,

  1. Terjadinya kerusakan pada o’ring pendingin yang terpasang pada exhaust valve dan/atau intake valve mesin.
  2. Terjadinya kerusakan permukaan cylinder head dan/atau exhaust valve yang disebabkan oleh berkurangnya ketebalan permukaan bahan dan/atau keretakan yang terjadi pada permukaan bahan.

Kebocoran yang masuk dalam ruang bakar mesin harus mendapat penaganan serius dengan segera. Dampak buruk dari kondisi ini apabila tidak dengan segera dilakukan penanganan adalah,

  1. Terjadinya water hammer. Air yang sifatnya tidak dapat dikompresikan namun dipaksa oleh dorongan piston dalam ruang bakar maka akan dapat menghasilkan “pukulan” air yang akan dapat merusak komponen mesin. Seperti terjadinya kerusakan ada piston, valve, cyl head atau bahkan conecting rod. Untuk mncegah terjadinya resiko terburuk water hammer yang dialami oleh mesin, maka sumber kebocoran harus dapat dengan segera dilakukan perbaikan. Baik dengan melakukan penggantian terhadap o’ring pendingin yang mengalami kerusakan ataupun melakukan penggantian komponen yang mengalami kerusakan permukaannya.
  2. Uap air yang terbakar dalam ruang bakar selanjutnya akan menempel dan melimbulkan kerak pada turbin blade turbocharger. Kerak air yang menempel pada bilah turbin akan menjadi pemberat putaran turbin. Dalam kondisi ini akan mengakibatkan menurunnya tekanan udara bilas mesin karena pengaruh putaran turbin mesin yang berkurang juga. Selain itu, putaran turbin turbocharger yang semakin melambat akan menghalangi laju aliran gas buang dari masing – masing silinder untuk segera keluar melalui cerobong. Hambatan aliran ini akan menjadi salah satu unsur yang mempengaruhi meningkatnya temperatur gas buang mesin pada seluruh silinder mesin.

Indikasi terjadinya kebocoran air tawar pendingin dalam ruang bakar mesin

Segala bentuk ketidaknormalan instrumen (baik tekanan dan temperatur) mesin pada saat beroperasi harus segera mendapat perhatian dan penanganan untuk mencegah terjadinya kerusakan yang berakibat fatal. Untuk dapat melakukan penanganan, maka hal yang perlu diperhatikan adalah beberapa indikasi yang memungkinkan terjadinya kebocoran terebut. Diantaranya adalah,

  1. Berkurangnya volume air tawar pendingin dalam tangki ekspansi. Apabila volume kebocoran dalam ruang bakar tidak terlalu  besar, maka berkurangnya volume air tawar pendingin dalam tangki idak dapat terpantau dengan signifikan.
  2. Terpantau dalam tangki ekspansi keluar gelembung – gelembung udara. Gelembung gelembung udara yang dimaksudkan adalah udara yang dikompresikan dalam ruang bakar mesin yang telah masuk dalam sistem pendingi mesin. Pada saat langkah kompresi mesin, udara dikompresikan dalam ruang bakar. Tekanan udara yang dikompresikan menjadi berlipat kurang lebih sampai dengan seratus kali lebih besar dari tekanan atmosfir. Tekanan yang tinggi tersebut memunginkan masuk dalam celah (titik sumber kebocoran) yang ada pada komponen mesin. Dalam kasus ini, kebocoran air tawar pendingin tidak dapat masuk dalam ruang bakar karena volume kebocoran yang relatif kecil dan tekanan kompesi mesin lebih besar apabila dibandingkan dengan tekanan air tawar pendingin (udara kompresi yang akan masuk dalam sistem air tawar pendingin). Udara yang masuk dalam sistem air tawar pendingin selanjutnya akan dapat terpantau pada tangki ekspansi. Perlahan (atau menyesuaikan dengan volume kebocorannya) akan ada gelembung – gelembung udara dalam tangki ekspansi.
  3. Tekanan air tawar pendingin yang terbaca pada pressure gauge menjadi gerak – gerak tidak stabil (hunting). Tekanan air tawar pendingn akan terganggu karena sistem air yang seharusnya padat, namun sudah terisi dengan udara kompresi mesin. Pada umumnya kondisi ini diistilahkan dengan “masuk angin”.

 Penangana dengan segera menjadi sangat penting untuk dlakukan untuk menghindari resiko - resiko yang dapat menghambat kelancaran operasioal mesin. Terhadap indikasi adanya keretakan pada permukaan komponen mesin, maka setelah dilakukan pembogkaran komponen perlu dilakukan color check untuk dapat memastikan sumber kebocoran yang diakibatkan oleh keretakan bahan.

 

Contoh identifikasi keretakan seating valve dengan menggunakan sistem color check. (Foto by: Dokumentasi pribadi penulis)

 

 

 

Kontaktor menjadi salah satu komponen yang banyak ditemui dalam rangkaian kelistrikan diatas kapal. Pentingnya penggunaan diatas kapal menjadi dasar pentingnya perawatan kontaktor tersebut. Dalam suatu kondisi, tidak jarang ditemukan adanya "musibah" kontaktor yang terbakar.
Apabila kontaktor dalam suatu rangkaian penggerak sudah dalam kondisi terbakar, pastinya sistem yang difungsikan sebagai penggerak tidak dapat difungsikan. Dalam kondisi tersebut menjadi kendala untuk dapat meyelesaikan suatu proyek dan terget pekerjaan hingga akan menggangu kelancaan operasional.

Magnetic contactor yang terpasang pada rangkaian kelistrikan. (foto by: Dokumemtasi pribadi penulis)


Beberapa penyebab terbakarnya kontaktor adalah,
  1. Pemilihan arus kontaktor berdasarkan rangkaian kerja yang tidak sesuai. Dalam kondisi ini diartikan juga bahwa terdapat beban yang lebih besar melewati kontaktor. Dimisalkan, arus kerja motor pada rangkaian adalah sebesar 30 A, namun digunakan kontaktor dibawah kapasitas arus motor listrik tersebut (misal 25A). Dalam kondisi ini, komponen pertama yang menjadi "korban" adalah kontaktor. Kumparan dalam magnetic contactor menjadi panas. Panas yang berlebih secara menerus akan dapat memicu terjadinya kontaktor yang terbakar.
  2. Kumparan yang ada pada magnetic contactor dalam kondisi kotor, berdebu, berminyak atau sejenisnya. Kotoran, debu ataupun minyak yang ada pada permukaan kumparan magnetic contactor akan memicu terjadinya kegagalan fungsi pada coil yang terpasang dalam magnetic contactor. 
  3. Over-load relay yang tidak terpasang pada rangkaian dan/atau dalam kondisi rusak. Pemasangan overload relay menjadi hal yang wajib sebagai pelengkap sistem keamanan rangkaian kelistrikan. Peran over-load relay menjadi sangat penting dalam rangkaian kelistrikan.  Apabila dimungkinkan terjadi kasus 'lonjakan arus' dalam rangkaian kelistrikan, maka magnetic contactor akan "terselamatkan" oleh fungsi over-load relay.
  4. Gerakan mekanis / putaran pada elektro motor yang berat. Pada umumnya, pemakaian kontaktor terpasang pada rangkaian starter untuk elektro motor. Gerakan mekanis / putaran elektro motor yang berat menjadi salah satu penyebab terbakarnya kontaktor. Putaran yang berat dapat disebabkan oleh beberapa hal diantaranya, 
      • Bearing yang terpasang pada elektro motor dalam kondisi tidak baik dan/atau rusak. Dalam kondisi demikian, maka gerakan rotor elekto motor menjadi tertahan dan berat. Apabila rangkaian dilengkapi degan overload relay, maka resiko terbakarnya kotaktor akan dapat diminimalkan.
      • Komponen mekanis shaft elektro motor dalam kondisi tesambung dengan brake. Kondisi brake ON akan memberatkan putaran  rotor elekto motor. Putaran yang berat selanjutnya akan memicu panas, dan resiko terparah apabila panas tidak ertangani dengan baik dapat mengakibatkan terbakarnya kontakor dan/atau elektro motir itu sendiri.
Terhadap adanya resiko terbakarnya kontaktor dalam suatu rangkaian, ada beberapa hal yang perlu dilakukan. diantaranya adalah,
  1. Dilakukan perawatan secara rutin terhadap rangkaian kelistrikan. Perawatan yang dimaksudkan diataranya adalah memeriksa dan memastikan kekencangan sambungan kabel yang terpasang pada kontaktor.
  2. Dalam langkah awal melakukan sambungan terhadap rangkaian, perlu dilakukan perhitungan dan pemilihan arus kerja kontaktor yang sesai dengan arus kerja beban yang ada.
  3. Memastikan kontaktor dalam kodisi bersih dan kering. Kontaktor yang terpasang harus dipastikan bebas dari kotoran. Selain itu, sumber kotoran dan sumber kebocoran air dan/atau minyak harus dihindarkan.
  4. Pemasangan ovrload relay pada rangkaian dan dipasikan dapat berfungsi dengan baik.
  5. Komponen penggerak mekanis yang terdapat pada beban harus dirawat dengan baik. Hal ini menjadi sangat perlu dilakukan untuk mencegah terjadinya jam terhadap komonen elektro motor.
Modernisasi layanan PLN salah satunya adalah dengan menerapkan sistem pembelian "listrik" pra-bayar. Pelanggan PLN akan membeli token (pulsa listrik) di gerai - gerai layanan yang bekerjadama dengan PLN. 
Selanjutnya akan didapatkan 20 (dua puluh) digit aangka yang dapat digunakan sebagai "kode unik" untuk di input dalam KWH meter.

Setelah 20 (dua puluh) digit angka dimasukkan, selanjutnya "stroom" akan bertambah sesuai dengan nominal pengisian.

Contoh display tegangan pada KWH meter. (Foto by: dokumentasi pribadi penulis)


Dalam operasionalnya, bagaimanakah pelanggan PLN dapat mengetahui besarnya unsur-unsur kelistrikan yang ada di rumahnya?

Jawabnya,
Secara sederhana dapat dilihat dari KWH meter dengan meng-input kode yang telah ditentukan oleh PLN. Diantaranya adalah,
  1. Cek tegangan, ketik 41 kemudian ENTER
  2. Cek arus, ketik 44 kemudian ENTER
  3. Cek energi, ketik 47 kemudian ENTER
  4. Cek sisa token, ketik 37 kemudian ENTER